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The diffraction problem for a slender ship held fixed in short regular incident waves 
is solved by a matched-asymptotic-expansion method which is uniform with respect 
to all incident wave directions including head seas. Special inner solutions are 
employed which satisfy the Helmholtz equation in cross-sectional planes of the ship 
and are non-singular in head seas. The inner expansion of the outer solution is derived 
directly for all wave directions rather than as a composite. The case of a ship with 
a long parallel middle body is studied by means of a mixed numerical and analytical 
solution which explicitly exhibits the transition between the distinctive behaviours 
of head and oblique seas and distinguishes effects generated at the bow from those 
of the parallel middle body. Calculations of the pressure distributions and wave 
elevations along a ship are reported and compared with experimental measurements. 
The agreement between theory and experiment is generally good, especially at the 
upwave end of the ship and along the upwave side. 

1. Introduction 
This paper concerns the diffraction problem of linearized ship hydrodynamics. The 

ship is held fixed in incident sinusoidal waves, and a time-periodic solution is sought 
for the velocity potential of the diffracted wave field. From this may be calculated 
the diffraction pressure on the hull, as required, for instance, in seakeeping calculations. 
Although direct numerical methods exist for this three-dimensional problem, there 
are advantages in approximating further by means of a high-frequency slender-body 
assumption. An asymptotic solution is obtained by matching an outer solution 
generated by a line of sources and dipoles to a family of two-dimensional inner 
solutions in cross-sectional planes of the ship. This approximation both reduces 
computation time and provides insight into the physical processes involved. Special 
difficulties arise when the waves are incident from ahead or astern or nearly so. 

The case of oblique seas, studied by Troesch (1979), yields a ‘pure strip theory’ 
(the field near the ship is determined entirely by the local cross-section and the 
incident wave), but this is singular in the limit of head or stern seas. For the case 
of exact head seas, studied by Faltinsen (1972) and several subsequent authors, the 
wave field near the ship has an accumulated ‘memory’ of the shape of cross-sections 
previously encountered by the wave. This material will be reviewed briefly in $2 to 
introduce notation; a more detailed review may be found in Ogilvie (1977), and 
further applications are discussed by Skj~rrdal& Faltinsen (1980) and Beck & Troesch 
( 1980). 

12-2 
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A uniform treatment covering head and oblique seas was given by Liapis & 
Faltinsen (1980), using a composite outer solution constructed from those of Troesch 
and Faltinsen. The present paper has a similar aim but derives a uniform inner 
expansion of the outer solution directly ($3 and Appendix A) rather than as a 
composite. It also employs certain special inner solutions for oblique seas ($4 and 
Appendix B) which violate the usual radiation condition but are non-singular in the 
head sea limit. The matching is carried out in $ 5 ,  where a Volterra integral equation 
is set up for the line source distribution. In recent work by Sclavounos (1981, 1984) 
similar results are derived using ‘unified theory’ (a composite of high- and low- 
frequency slender-body theories). A Volterra integral equation asymptotically 
equivalent to the present one is obtained as a high-frequency approximation. (This 
work came to the authors’ attention after initial submission of the present paper.) 
In  $6 the case of a ship with a long parallel middle body and relatively short bow 
section is considered. A mixed numerical and analytical solution of the Volterra 
integral equation is presented. This explicitly describes the transition between oblique- 
and head-sea behaviours for waves travelling along the parallel middle body. It also 
shows that effects generated at the bow decay rapidly along the ship at all wave 
headings. In the case of head seas, these findings support those of Ursell (1975) for 
certain model problems involving a half-immersed circular cylinder, treated by a 
Fourier transform along the cylinder and multipole expansion methods. Numerical 
results are presented in $7 for pressure distributions and wave elevations along the 
ore-carrier and the other test shape used in previous experimental and theoretical 
work. The results suggest that three-dimensional effects in oblique seas are successfully 
described. 

2. Formulation and review 
In equilibrium conditions let D denote the fluid domain (assumed to be of infinite 

depth), F the free surface and S the wetted surface of the hull. Let O q z  be a set of 
orthogonal axes with Oxy in the free surface, 0 at the bow, Ox directed towards the 
stern and Oz vertically upward. Suppose now that waves are incident upon the ship 
in a direction making an angle /3 with Ox. The fluid is assumed to be inviscid, 
incompressible and the flow irrotational. The usual form of the diffraction problem 
is then as follows. The velocity potential for the complete wave field is Re [$(x, y, z )  eiot], 
where 

V2$ = 0 inD,  
$n = 0 on S (suffix n denotes normal differentiation), 

K$-+ ,=O onF ,  
$ + O  asz-t-m, 

4 = 

$I = exp [Kz-iK(x cosP+y sin/3)], 
$D represents outgoing waves at  infinity, 
K = d / g .  

As usual in slender-body theory, a small parameter E is chosen as a measure of the 
ratio of transverse to longitudinal lengthscales of the ship (it is helpful but possibly 
inaccurate to think of E = B / L  = beamllength). In  the high-frequency theory the 
wavelengthis taken to be O(E)  L. Let v = K cos/3andp = K sinpdenote wavenumbers 
parallel and perpendicular to the axis of the ship. Initially, oblique seas are considered 
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(i.e. the waves come from a direction not close to head, stern or beam) and so K, u 
and p are all large, of order (sL)-l. In  the near field, defined by 0 < x < L, 
(y2+z2)i = O(s) L, the slenderness assumption takes the form of assuming a slow 
modulation of the incident wave, given by 

$w, y, 2) = $(x, y, 4 e-i”Z, 

where 

At station x let d(z),Z(x) and 9 ( z )  denote the cross sections of D, 8 and F 
respectively, and let Ndenote the two-dimensional unit normal to Z(z) directed into 
the fluid. Then to leading order the problem satisfied by $ is the following. 

Problem P’(x) : 
$gg+$22-v8+ = 0 ind(z),  
$N = 0 on+), 
K$-$2 = 0 on F ( x ) ,  
$ + O  asz+-ao, 

and a matching condition as I y I + ao. At each station x this is a two-dimensional 
problem, and x-dependence enters only via the shape of C(x)  and the matching. 

The far-field solution for the diffracted potential #D must comprise a combination 
of outgoing waves of sufficient generality to match with the inner solutions. It is 
customary to start with the potentials of a line source distribution along y = z = 0, 
0 < x < L of unknown density u ( ~ ) e - ~ ~ ~ ,  where u is slowly varying, and a similar 
transverse dipole distribution 7(x) e-i”z. These potentials are first approximated in 
the far field by certain pole contributions (thus it is really these contributions which 
provide the ansatz for the outer solution). For matching purposes, inner expansions 
are then required. In  oblique seas these are 

and -7 (x )  sgn (y) eKz-ivz-iplYl (2) 

for the source and dipole potentials respectively, and lead to the predictable matching 
condition to be imposed on the inner problems: 

$ - eK*-ipg + c *( x eK*-*plgl as y + 00, (3) 

where c* = T7+iKu/p. c*(x )  are determined entirely by the inner problem Pb(x) 
(so that it is a ‘pure strip theory’), and then u and 7 may be inferred. The factor 
l / p  multiplying the source term suggests difficulties in the head-sea limit, and this 
is confirmed by properties of the inner problems. 

Each oblique-sea inner problem, with matching condition (3), may be solved by 
reformulating it as an integral equation over Z using the Green function 

exp [iv I y--1] 1 sinh w 
K 

Y(Y,z,-1]7c) = Ko(vp)+KO(vp’)+~rv coshw-K 

+ v(z + 5) cosh w] dw, (4) 

where K,isarnodifiedBesselfunction,p = { ( ~ - - 1 ] ) ~ +  ( Z - C ) ~ } : , ~ ’  = ( ( y - ~ / ) ~ +  ( ~ + f ; ) ~ } i  
and r denotes a contour consisting of the real axis from - 00 to co indented below 
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the pole on the negative part and above the pole on the positive part. This represents 
outgoing waves at infinity : 

It is evident from (4) and (5 )  that y is singular in the head-sea limit (,u-+O) and 
consequently a solution of problem Pp(x) obtained in this way is expected to be 
singular also as p+O.  The singularity, in each case, is in the symmetric part (in y) 
of the function concerned. 

For the exact head-sea case, the inner problem is P,(x) (i.e. v = K , p  = 0). The 
formal analogue of the radiation condition (3) would be $ - c(z) eKz as I y I + 00, but 
this is not appropriate since Ursell (19683) has shown that, a t  least for smooth 
cross-sections with vertical tangents at the free surface, and except possibly at a 
discrete set of values of K, the problem go(.) has no non-trivial bounded solution. 
If C were independent of x then this problem would describe propagation of regular 
waves parallel to a uniform cylinder. Ursell's result shows that no physically 
acceptable solution exists and so waves cannot propagate in this manner without 
progressive change of form. A Green function can be constructed for this case by a 
different choice of integration contour : 

x exp [iK I y - 'I 1 sinh w + K(z + 5) cosh w] dw, (6) 

where r, and I-', denote contours consisting of the real axis from - 00 to + co indented 
respectively below and above the double pole at w = 0. This Green function has 
unusual behaviour at infinity : 

G(y, z, 'I,[) +2xKI y-'I I eK('+5) + O  as I y-'I I + 00, 

which indicates the growth rate at infinity to be expected for non-trivial solutions 
of problem go. Ursell (19683) has shown that, for cross-sections restricted as before, 
and except possibly at a discrete set of values of K, specification of the linear growth 
rate leads to an existence and uniqueness result as follows. For each cross-section C(z) 
there is a unique coefficient B,(z) such that the problem P&x) has a unique solution 
$* satisfying the condition 

$,-(l+B,KIyI)eKz+O as Iyl+oo. (7) 

B,  turns out to be an important coefficient, which carries information of the section 
shape into the far field. 

In head seas the outer solution plays a more significant role. By symmetry, only 
the source distribution is required for the diffracted wave. The inner expansion of 
the outer diffraction potential is 

#D(z, y, z )  - eKz-IK2 {V, w4 + K I I> + 44 (8) 
O(E-:cT) O ( g )  

as s+O, with Ky = O ( l ) ,  where V, denotes the Abel operator 
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and the indicated orders apply well away from the ends of the ship. (i! is always taken 
to denote eyin.) This result was derived by Faltinsen (1972), but with an additional 
term. A generalization of (8) is derived in Appendix A, where it is also explained why 
the additional term should not appear. An inner solution of the form 

qqx, y, 4 = p ( z )  II.*(., y, 4 e-iKz 

is to be matched to the outer using (7) and (8). The method proposed by Maruo & 
Sasaki (1974) is to match separately the terms independent of y and terms linear in 
I y I, giving respectively 

p ( z )  = 1 +v, cr(x) 

and P ( 4  B * ( 4  = 44. 
It may be noted that this matching mixes terms of different orders in (8). Mei & Tuck 
(1980) argue that, while this is acceptable (but of no particular virt,ue) on the middle 
body of the ship, it actually improves the order of the error near the bow (as compared 
with a matching order by order in (8)). Elimination of p then gives the Volterra 
integral equation 

cr = B*(l+V,cr). 

An alternative treatment by Haren & Mei (1981), for the head-sea case, replaces 
the source distribution for the outer solution by a parabolic approximation in an 
intermediate region. This approximation has the physical interpretation of allowing 
waves near the ship to propagate only from the bow towards the stern. Such a 
restriction is consistent with the previous approach provided that the additional term 
does not appear in (8). Waves travelling from stern to bow appear only at higher order. 

The uniform treatment of head and oblique seas by Liapis & Faltinsen (1980) begins 
by considering nearly head seas, /3 = O(s), and presents an inner expansion of the outer 
solution analogous to (8) with the additional term. A composite of this expansion and 
the oblique-sea result (1) is then observed. This provides a smooth transition from 
oblique seas to head seas, though some doubt remains as to its validity when /3 is 
small but not O(s). In oblique seas, the composite as it stands (i.e. without 
reapproximating by (1)) is not expressed in terms of the appropriate travelling-wave 
solutions required for matching by analytical means. Liapis & Faltinsen therefore 
present a numerical method for solving inner problems which can handle matching 
conditions of a more general kind. In  the present work the matching can be performed 
in a natural way for all wave headings, and this difficulty is avoided. 

3. The outer solution 
In  the outer region the diffracted potential #D is taken to be the far-field potential 

of a line of sources and transverse dipoles in the mean free surface along the centreline 
of the ship. For a source distribution of line density ~ ( x )  the appropriate potential is 

where 

and 
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For a transverse dipole distribution of line density 7(2) the potential is 
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Inner approximations of these potentials, uniformly valid for oblique and head seas 
are provided by the following result. 

THEOREM 1. Suppose there are constants C and n > (independent of k ,  L and /3) such 
that Iu*(k) I < CL/(1+1 kLIn) for all k .  Then as s+O with Ky, Kz = 0(1), and 
0 < /3 < < +x, 

K 
P 

@(u : x, y, z )  = eKz-iuz {Va a ( x )  cospy + u ( x )  - sinp I y I} + O ( ~ ( ~ - t ) l @ ~ + l ) )  (9) 

and - 

where V p  is the Abel operator, 

and the orders of the errors apply uniformly with respect to /3. 
The proof is summarized in Appendix A and given in detail in Martin (1984). It 

uses the fact that, for all 8, the leading contribution to @ ( g : x ,  y, z) as s+O comes 
from the neighbourhood of the point k = -v, which, for head or nearly head sew, 
contains the branch point at  k = - K. However, in expanding the integrand about 
k = - v, it is important to expand only those terms that do not produce divisions by 
K- v. The density function u (and likewise T) is determined only after matching and 
so the bound on I cr*(k) I is an a priori assumption. It holds with n = 2, for instance, 
if u is non-zero only for 0 < 2 < L, a ( x ) + O  as x+O or L, and 

GI a’(0) I + I u’(L) I + I a”(4 I W/sup I (4 I 

is bounded uniformly in K, L, /3. In  the head-sea limit ( p - + O ,  v+K), 
Theorem 1 reproduces the result (8). In  oblique seas, and provided ( K - v ) z  is 
large, the operator Va may be approximated by an endpoint contribution near 
= x, giving Vau - iKu/p, and then (1) is formally obtained. 

4. The inner solutions 
The inner problem 9’p with 8 + 0 may be solved with an outgoing-wave condition 

at  infinity by use of the Green function (a), but the solution is singular as /3+0. The 
problem Po may be solved with the matching condition (7) by use of the Green 
function (6), which differs from (4) by a different choice of integration contour. A 
similar change of contour when /3 + 0 introduces incoming as well as outgoing waves 
at  infinity. Let 

x exp [iv I y- 7 I sinh w + v(z+ 6) cosh w] dw, 
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where r, and r, denote contours consisting of the real axis from - 00 to 00 indented 
respectively below and above both poles. Then 

(11) G(y,z,q,C)+2~ eK@+C)- sinpIy-ql+O a s ( y - q I + a .  

The intention is to work with inner solutions constructed using this Green function, 
which is not singular in head seas, and to depend upon the matching with the outer 
solution to impose the correct radiation condition for all incident wave directions. 
Since it is known that the singularity in the oblique-sea theory as b+-0 occurs in the 
symmetric part of the problem (in y), symmetric and antisymmetric inner solutions 
will be constructed separately. 

Consider first and ordinary transmission problem for oblique seas, which is to find 
$ = eT satisfying PB with 

K 

P 

(e+v+R e@v)eKZ as y+--oo, 
as y++oo. ' { T e-i/W eKz 

The coefficients R and T have to be calculated as part of the solution. The symmetric 
and antisymmetric parts of $T each satisfy the problem qP and respectively 

$ N eKz{+(T+R+l) cospy++i(T+R-1) sinpi yl}, 
$ N eKZ{+(T-R-l) cospy+$i(T-R+l) sinplyl}sgn(y) as I ~ ~ + c o .  

As /3+0, R and T are singular, but it is possible to define a new normalization and 
new constants, suggested by the form of (l l) ,  which are not singular. The results are 
contained in the following theorem, proved in Appendix B. 

THEOREM 2. Let Z(x) be a smooth cross-section with vertical tangents at the free surface. 
Then for each /I, and for each K except possibly a discrete set of values, there are unique 
coeficients B$ (x) and B$(x) such that the problem PB(x) hm unique solutions p*, $$ 
which are respectively symmetric and antisymmetric in y and satisfy the conditions 

~ - e K z { c o s p y + ~ ( x ) - s i n p l  K yl}-+o 

P 

$$-eKz {$ sinpy + B$(x) cospy sgn (y )} -+0 as 1 y I + CO. 

BS, and B$ depend on x only through the cross-sectional shape Z., and carry 
information of this shape into the far field. The proof generalizes that of Ursell(lQ68 b) 
for head seas. For /3 =k 0 the theorem is equivalent to an existence and uniqueness 
theorem for the ordinary transmission problem through the relationships 

ip(T-R+ 1) ' 
ip(T+R- 1) 
K(T+R+ 1) ' 

B$ = B"* = 

$T = i (T+R+ 1) $$-liL(T-R+ 1) $$,I 
, K  

which also provide numerical comparisons with published results on R and T. The 
coefficients P* and B$ are real, and this is equivalent to the well-known results 
I R le + 1 T Ie = 1 (energy conservation) and RT+ TR = 0. 
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The inner solution is taken to be 

4 = e-’””{P(4 @S, + Q(4 $3, (13) 

where p and q are determined by the matching. 
The special solutions @% and $2 are computed by means of integral equations over 

the cross-sections Z. Let Z+ denote the part of C in y > 0, and suppose this is 
parametrized by arc-length as (q(s),  [(a)). Then 

(14) 

and 
K 

c1 
@$(Y 9 2 )  = - eKz sin puy + K h, QW) {G(Y, 2, W), [(s’)) - G(Y 9 2 ,  - q(s’), a s ’ ) ) }  ds’, 

(15) 

provided that P and Q satisfy the following Fredholm integral equations expressing 
the rigid-body boundary condition on Z+ : 

where G(s, s;) stands for G(q(s), [(s), fq(s’), [(a’)). 
Using the asymptotic property ( 1  1 )  of G, it is then found that 

BS, = -4xK Jr+ P(s’) eK5@‘) cos,q(s’)ds’ 

and B$ = 

It should be noted that all 

5. Matching 

4nK lz+ &(a’) eKc@’) - K sinpq(s’) ds’. 

lu 

these equations are non-singular as B+O.  

From Theorem 1 the inner expansion of the complete outer potential is 

K 

P 
4 - eKz-ivz { e-ifiv + vS a(z)  cos,uy + a ( x )  - sinp I y I -7(x) e-iplul sgn (y)] . 

From (13) and Theorem 2, the outer expansion of the complete inner potential is 

11 4 eKz-ivz { p ( ~ ) [ C o S P Y + ~ ~ ( ~ ) - - s i n ~ ~ y l ] + ~ ( ~ ) [ -  K K sinpy+B$(s) cospy sgn(y) . 
P lu 

The matching follows the approach of Maruo & Sasaki (1974), in which all the terms 
quoted above are matched simultaneously, even though, in head seas, this mixes 
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different orders a t  stations well away from the bow. Four equations are obtained by 
matching the terms in cosine and in sine for y > 0 and y < 0: 

p+qBf: = l + V g a - ~ ,  

P-qB; = 1 + V ~ V + T ,  

It follows that a satisfies the Volterra integral equation 

a = @*(l+Vga), 

PBf: 
while 7 is given explicitly as 

7 =  
,uB$-iK ’ 

The coefficients of the inner solution are related to -a and 7 by 
a 7 

p = -, q = -@. 
BS, 

After (18) has been solved numerically, all aspects of the inner and outer solutions 
may be computed. 

In  oblique seas and provided (K- v) z is large, it  has been noted that Vg a - iKa/p. 
Equation (18) then formally gives 

(20) 

Equations (20) and (19) may be shown to agree with the results (1) and (2) obtained 
directly from oblique-sea theory. 

The integral equation (18) is asymptotically equivalent, both for head and oblique 
seas, to one given by Sclavounos (1981), obtained as a high-frequency approximation 
of the ‘unified theory’. Sclavounos also uses inner solutions equivalent to @* and $2 
and the Green function G, considered as Re[?]. Results like Theorems 1 and 2 are 
used, but proofs are not given in detail. 

PBs* a =  
,u - iKBS, ’ 

6. The effect of a long parallel middle body 
The integral equation (18) will be studied for a simplified ship-like form consisting 

of a bow section and then a long parallel middle body of arbitrary cross-section. 

where b and 1 are constants. This is a purely theoretical case; the tempting physical 
interpretation as a uniform semi-infinite cylinder in x 2 1 clearly violates the 
slenderness assumption at its end. Let N = K- v and M = ba Ka/(K+v), which are 
found to be wave-numbers associated with the variation of a along the ship. As a 
result of slenderness M is large, of order (d)-l ,  but N may be large or small. Let U 
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which has the property that 

Then (18) may be written as 
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U2f(4  = -i jzZm d.5 

eiNx a(z) = b eiNz - Mi U{eiNx a@)}. 

Equation (22) may be solved explicitly as follows. Operate with U and use (21), 
eliminate U{eiNZ a@)} using (22) again, and solve the elementary integral equation 
that results. One obtains a(x) = a,&), where 

and 

F is related to a Fresnel integral and has the asymptotic properties 

and 

P ( X )  = i+&X-1+O(X-2) as X+co 

F ( X )  = (7ciX)i e-iX+O(X) as X+O. 

(24) 

(25) 

For the exact head-sea case (p = 0, v = K, N = 0), by (25), 

and many wavelengths from the bow, by (24), 

in agreement with Faltinsen (1972) and Ursell (1975). For the oblique-sea case the 
full solution (23) is required, but many wavelengths from the bow both appearances 
of F may be approximated by (24). The leading terms cancel, leaving 

as Kx+ co. The first term agrees with the 'pure strip theory' for oblique seas (20). 
The next term contains an end effect, which decays as the inverse t power and thus 
more rapidly than the inverse !j power in head seas. The transition between the two 
is described by (23). 

In order to remove the non-physical abrupt change at  x = 1 consider now the case 

with a smooth transition from 0 to b in 0 < x < I representing a slender bow section. 
Suppose the integral equation (1 8) has been solved numerically or otherwise for 
a(x) = .s(z), 0 < x < 1, which will be considered a known function. Let 

Then (18) becomes 

eiNxa(x) = b eiNz-MiU{eiNza(x)}-Miw(x) (x 2 I ) ,  
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which may be solved explicitly as described above to give a(x) = ao(x) + crl(x), where 
a. is given by (23) and 

al(x) = -e-i(M+N)z 

The proof of (27) makes use of the result 

s(Z) = b-  Mi w(Z) e-iN1, 

which is just the integral equation with x = I ,  and the property of U (proved by a 
Fourier transform) that 

jzm eiME { iMif( 5) + - Uf( E ) }  d5 = 0 
d 

d5 

for all M > 0 and any Fourier-transformable functionf that vanishes for z < E .  
The behaviour of a1 many wavelengths from the bow is of principal interest. As 

1 2z-x-  

2-5 

and 
Uw(x) = A Jo eiNE cos-l( 3 s ( f )  d5 

(the inverse cosine takes values between 0 and x). It follows from (27) that 

The influence of a smooth bow section thus decays at least as fast as the inverse t 
power of distance whatever the incident wave direction. This supports the finding 
of Ursell(l975) for head seas, using a model problem in which a bow was represented 
by a source distribution on a finite part of an infinite circular cylinder. For head or 
nearly head seas the fist term in A is dominant, since MZ is large for a slender bow. 
In oblique seas NZ is also large, and then A can be further approximated by endpoint 
contributions to give 

W l )  01- i n )  e-iN(x-l) (xiNZ)-$, 
2Kb (TI(X) - - 

indicating that the end effect is even smaller. 

7. Numerical results 
This section describes a direct numerical study of the formulation set out in $93-5 

for some test cases also used in previous work. The Fredholm integral equations (16) 
and (1 7) for the special solutions p* and $2 (and hence the coefficients B$ and B i )  
were solved for a set of cross-sections Z+(x), spaced along the ship, by a standard 
collocation method. A check on these computations is provided by (12), which, for 
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-b KB = 0.8 
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FIGURE 1. Reflection coefficient I R I plotted against heading angle B for a rectangular cross-section 
(draught: beam = 1 : 2) at three incident wavelengths given by KB = 0.2,0.4,0.8, where B = beam 
and K = Zn/wavelength. Comparison of present method (0) and results of Bai (1975) (-). 

oblique seas, relate BS, and B$ to the ordinary reflection and transmission coefficients. 
Comparisons with results given by Bai (1975) using a finite-element method are shown 
in figure 1. In  this figure I R I is plotted against heading angle, for three wavelengths 
and a cross-section that is rectangular, with draught: beam = 1 : 2. Agreement is seen 
to be good. 

The Volterra integral equation (18) for a(z) was solved by a marching procedure, 
using a modified Simpson rule for the integration. The results agree well with the exact 
solution (23) for the theoretical case of constant BS,. 

The complete calculation was performed for the ore-carrier used in previous 
experimental and theoretical work. This ship has nearly rectangular cross-sections 
(draught : beam x 2 : 5 )  for much of its length (beam : length x 1 : 6). A body plan is 
given by Liapis t Faltinsen ( 1980). The non-dimensional pressure amplitude I P/pgh 1, 
where h = incident wave amplitude, was computed a t  points on the hull. Sample 
results are presented in figures 2 and 3. These figures also include the results of the 
oblique-sea theory based on (1) and (2), and experimental measurements by 
Nakamura et al. (1973) and by the Society of Ship Research of Japan (1974). Each 
diagram represents a pressure distribution at a particular cross-section plotted 
against 8 ,  the polar angle measured from the keel with B positive on the upwave side. 
Figure 2 is for heading B = 45O, wavelength h = 0.5L, and includes a forward, midship 
and aft section (compare Liapis & Faltinsen 1980, figures 3-5; Troesch 1979, 
figures 5 and 2). Figure 3 is similar, but with A = L (compare Liapis & Faltinsen 1980, 
figures 9-11). In qualitative terms the findings confirm those of Liapis t Faltinsen; 
quantitatively the present results may agree slightly better with the measurements, 
but this is hardly significant. The agreement is found to be remarkably good 
considering that the ship is not particularly slender and the wavelength not 
particularly short compared with ship length. Three-dimensional effects, absent from 
the oblique-sea theory, are most evident on the leeside at the upwave end of the ship 
(figures 2a, 3a ) .  Results were also computed with /? = 85" (nearly beam seas) and 
A = $5, but are not included since they do not differ appreciably from those of Liapis 
t Faltinsen. 

An important purpose of a uniform theory is to study to what extent the 
three-dimensional effects, present in head seas, survive as /3 is increased from zero. 
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FIQURE 2. Non-dimensional pressure amplitude 1 P I/pgh (where h = incident wave amplitude) on 
three cross-sections of the hull of an ore-carrier plotted against 0, the polar angle measured from 
the keel (with 0 positive on the upwave side): (a) a t  a forward station x / L  = 0.15; (b) amidships 
x / L  = 0.5; (c) at an aft station x / L  = 0.75. Comparison of present method (-), oblique-sea theory 
(---), experimental results of Nakamura et al. (1973) (0 )  and of the Society of Ship Research of 
Japan (1974) (0). Heading angle B = 45' and wavelength A = 0.5 L. 

A convenient indicator of this is the wave amplitude along the side of a ship 
which is chosen to be symmetrical fore and aft (i.e. about x = iL) .  The oblique-sea 
theory would predict that the wave-amplitude would also be symmetrical about 
z = ?jL, and deviations from symmetry indicate three-dimensional effects. A simplified 
shiplike form studied by Maruo & Sasaki (1974) was used. It has semicircular 
cross-sections, uniform parallel middle body and symmetrically tapered ends 
(beam:length = 3: 10, length of tapered ends:length = 1 : 5 ) .  In figure 4 the wave 
amplitudes along the sides of this form are plotted against x, for h = 0.5L and a range 
of values of 8. Although for the most part the resulting curves become more 
symmetrical about x = ?jL as is increased, there is still noticeable non-symmetry 
even at 50°, indicating the continued presence of three-dimensional effects. However, 
the non-symmetry is of an order consistent with (26) and (28), indicating that in this 
example the value of E is too large for the inverse t decay of end effects to become 
fully effective. 
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FIGURE 3. As figure 2 with A = L. 
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FIQURE 4. Non-dimensional wave amplitude 1 PI/pgh along the sides of a shiplike form which is 
symmetrical about x = iL, for wavelength A = 0.5 L and four angles of incidence : -, B = 0" ; 
-- , 25"; ---, 50"; ---, 85". The form has semicircular cross-sections and the profile shown. 
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8. Concluding remarks 
The diffraction problem for a slender ship in short waves has been solved by a 

matched-asymptotic-expansion method which is uniform with respect to incident 
wave direction including head seas. In  this method the inner expansion of the outer 
solution (generated by a line of sources and dipoles) is obtained directly rather than 
as a composite, and the inner solution is expressed in terms of two special solutions 
of the Helmholtz equation which are non-singular in the head-sea limit. In  oblique 
seas these solutions represent incoming as well as outgoing waves, but the correct 
radiation condition is later ensured through the matching. Associated with the special 
solutions are two coefficients, which depend on the local cross-sectional shape and 
which, through the matching, carry information of this shape into the outer field. 
Determination of each coefficient requires the solution of a single Fredholm integral 
equation over the cross-sectional curve. After matching, the dipole strength is found 
explicitly and a single Volterra integral equation must be solved to find the source 
strength. All physical quantities of interest are then easily calculated. 

For the case of a ship with a long parallel middle body and relatively short bow 
section, a mixed numerical and analytical solution of the Volterra integral equation 
explicitly describes the transition from the ‘pure strip theory’ results in oblique seas 
to the inverse square root decay of amplitude with distance along the ship in head 
seas. It also shows that effects generated at the bow decay as the inverse t power 
of distance along the ship at all wave headings. 

When applied to an ore-carrier, the method is found to give good agreement with 
published experimental results for pressure distributions on the hull, even for waves 
as long as the ship. For waves incident at 4 5 O ,  differences between the present results 
and the oblique-sea pure strip theory are observed, especially near the bow on the 
down-wave side. The wave amplitude at  points along the hull of a shiplike form chosen 
to be symmetric fore and aft was computed for a range of heading angles. Oblique-sea 
pure strip theory would predict that this wave amplitude would also be symmetric 
fore and aft. The present theory for a case with h / L = 0 . 5  shows significant 
non-symmetry even at incidence angles as large as 50°, indicating the persistence of 
significant three-dimenaional effects. 

During the period of this work one of us (D.B.) was employed under the contract 
Safeship (5 )  by the U.K. Department of Trade, whose support is gratefully 
acknowledged. 

Appendix A. Summary of proof of Theorem 1 
In this summary the detailed derivation of the error bounds is omitted ; for a fuller 

account see Martin (1984). All orders of magnitude are uniform with respect to the 
heading angle B, 0 < /3 < B1 < $. It is assumed that KL and VL are O ( E - ~ ) ,  Ky = O( l ) ,  
but ( K -  v) L may be large or small. The following elementary results are used. 

For each m > 1 there are constants cl, c2, c3, c4 such that, for all a > 0 and L > 0, 



Let 

and 

(k-v+K)i (k >, v - K ) .  
i(v-K-k): (k < v - K ) ,  

v-k); (k < K + v )  
g(k) = { ( K +  

-i(k-K-v)i (k > K+v). 

Then, with a minor change of variable, 

Let a = KEB, where 0 < S < 1, and consider separately the intervals ( -  00, -a), 
(-a, a), (a, a). The contribution of (a, 00)  may be shown to be O ( ~ ~ - l - ~ ' + p )  by noting 
that on this interval f ( k )  > ki and Im If(k)g(k)] < 0, and using (A 1). Likewise the 
contribution of ( -  a, -a) is O ( E ~ - ~ - ~ ' * )  by noting that on this interval g(k) > Ki 
and Im If(k) g(k)] < 0, and using (A 2). On (-a, a) contributions to the integrand of 
terms in sin (I y Ifg) and cos (I y I fg) require different treatments. For the former the 
regularity of (sin O)/O a t  O = 0 enables the integrand to  be approximated by its value 
at k = 0 with an error bound uniform in p. One may show that 

A similar step cannot be performed for the cosine term owing to  the factor l/f(k), 
which cannot be approximated for small k uniformly in /?. By approximating all the 
remaining terms by their values at k = 0, and using (A 3) and (A 4) to simplify the 
resulting error bounds, one may show that 

I n  the approximations (A 5) and (A 6), the domain of integration may be extended 
to  ( -  a, a) with errors O ( E ~ - ~ - ~ ' + ' )  for (A 5 )  and O(sn-l-nd+:s) for (A 6). 

Let S be chosen so that n- 1 -nS+!$ = -++a, that  is S = (n-$)/(n++). The error 
terms are all then O ( E ( ~ ~ ) ' ( ~ ~ + ~ ) ) ,  and hence small provided n > $. The result (9) 
follows by the convolution theorem for Fourier transforms, noting that 

00 eikz 27c e-i(K-") H ( z )  JL f ( k )  (7tix)f , 
-dk= 

where H is the unit step function. 
Now consider 
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and split the domain of integration into ( -  00, -a), (-a, a), (a, co) as before. It is 

On (-a, a) arguments similar to  that leading to (A 5 )  give 
readily seen that the contributions of ( -  co, -a) and (a, co) are both O(en-l-ns+a 1- 

J -a J -a 

Extension of the domain of integration in the approximation (A 7) to ( -  00, co) 
introduces further errors Let 6 be chosen so that n -  1 - n6+ 6 = -++a, 
that is S = ( n - i ) / n .  The error terms are then all O(dn-l)lzn), and so small provided 
n > 1. The result (10) follows. 

The leading terms in these calculations come from a neighbourhood of k = 0 that, 
for head or nearly head seas, contains the branch point at k = -(K-v). Faltinsen 
(1972) considers, in a similar manner, the contribution of the neighbourhood of the 
branch point at k = K+v, and this produces the extra term. However, as noted 
earlier, the domain (a,co), which would contain such a neighbourhood, gives an 
asymptotically smaller contribution. This conclusion follows from the assumed bound 
on I cr*(k) I used elsewhere in the argument. The larger result found by Faltinsen is 
entirely attributable to the final extension of the domain to ( -  00, co), which then 
includes the neighbourhood of k = 0 where I a*(k) I is largest. The contribution of the 
extension is asymptotically larger than that of the original domain, so this step is 
invalid. A numerical check on the effect of the extra term was performed for the 
ore-carrier, described in $6, in head seas of wavelengths 0.5L and L (see Barrie 1984). 
Removal of the extra term was found to increase the magnitude of the total potential 
at  points on the hull by at most 5%. 

Appendix B. Proof of Theorem 2 
The proof follows closely that of Ursell(1968b), and only the necessary modifications 

will be noted. The kernels of the Fredholm integral equations (16) and (17) may be 
shown to be bounded, as in Ursell’s Appendix 1, and are analytic functions both of 
K and 8. Hence their Fredholm determinants are analytic functions of K and p, and 
so, for each p, can vanish for at most an enumerable set of values of K, unless they 
vanish identically. However, when K = p = 0, the Fredholm determinants do not 
vanish. For the symmetric case this is exactly the result proved by Ursell, and the 
antisymmetric case is little different. Let V denote the closed curve consisting of C 
and its reflection in z = 0. Let P and Q be extended to V as functions symmetric in 
z and respectively symmetric and antisymmetric in y. Then, for K = /3 = 0, (16) and 
(17) become respectively 

The same operator occurs on the left of both equations, and i t  is known to have non-zero 
Fredholm determinant as noted by Ursell. The general theory of Fredholm integral 
equations of the second kind now shows that (16) and (17) have unique solutions P 
and Q for each 8, except for at most an enumerable set of values of K. The existence 
of the solutions @$ and @$ then follows from (14) and (15) by construction. One can, 
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incidentally, show that whenp = 0, and K+O, B”* - KB,  where B denotes the beam, 
and B$ - P A ,  where A denotes the submerged cross-sectional area. 

To show the uniqueness of $.”, and $2, Fredholm integral equations are constructed 
by means of Green’s Theorem as in Ursell (1968b, $4). For the symmetric case the 
Green function 

2 7  7, Y) = G(Y, z , r ,  Q + G(Y, 2, - 736) - 2 eK5 cospr Q(y, G O ,  0) 

is used, while for the antisymmetric case 

These are exponentially small as I y I+ 00 (see Ursell 1968a,b). The conditions on p* 
and $2 ensure that they are algebraically bounded for all B (in fact bounded unless 
/3 = 0), and this is sufficient to deduce the integral equations 

and 

P Jz, 
$ $ ( s ‘ ) w  a2 (s’, 0,O) ds’. 

b 

The uniqueness argument of Ursell(19683, $4) now goes through, with aG/ay replacing 
G in the antisymmetric case. 
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